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Executive Summary
Problem
• Fault detection is an integral part of any modern building system. If faults are not detected and resolved in a 

timely manner, health and safety issues may arise in addition to wasted energy from ineffective usage.

Objective
• Accurately detect whether a fault has occurred in the given AHU system with the available data.

Approach
• Pre-process and prepare the data, conduct EDA on the dataset, apply AI techniques (unsupervised learning, 

supervised learning, and ANN), check goodness measures and find the best model for fault diagnosis.

Impact
• Currently, detecting a fault in AHUs are automated via conditional programming in BMS systems (which 

may not be reliable) and the final determination is done by an experienced engineer (especially for false 
negatives)

• Accurate and prompt automated fault detection minimizes AHU downtime, resulting in improved comfort, 
energy savings, air quality improvement, increased equipment lifetime, and improved service scheduling

ENSY 5800: A.I. in Energy Systems



Slide 412/06/2021 Slide 412/06/2021

Problem Statement & Definition
• An air handling unit (AHU) connects primary heating and cooling plants with 

building zones, controls building ventilation air intake, and greatly affects the 
energy consumed for heating, cooling, and ventilating, as well as supply air 
temperature and humidity levels 

• In effect, AHUs manage heat/energy exchange and ventilation
• Therefore, an AHU's operation significantly impacts building energy use, health, 

and comfort aspects, e.g. faulty AHU ventilation  higher risk for recirculation of 
particulates such as COVID-19

Difficulties for fault prediction in AHU systems
• Every AHU system is slightly different, as each is a custom system (especially for 

variable-air-volume systems)
• Multiple operational modes possible
• Frequent transient operation
• There is currently no generalized analytical model for complete analysis of an 

arbitrary AHU.
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Problem Statement & Definition
• Fault detection for AHU-A in a small size commercial building in Iowa during summer, winter, and 

transition season. The faults were manually imposed into the control system. Each fault was tested for one 
day. The experimental dataset was provided in “MZVAV-2-1.csv” and the simulated dataset was provided in 
“MZVAV-2-2.csv” 

• Main variables: temperature (outdoor air, supply air, mixed air, return air, status signals (supply air fan, 
return air fan), control signals (supply air fan speed, return air fan speed, exhaust air damper, outdoor air 
damper, return air damper, cooling coil valve, heating coil valve), occupancy mode indicator

• Determine: fault detection ground truth
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Exploratory Data Analysis
• For exploratory data analysis, I used boxplots, 

histograms, cross plots, correlation plots, principal 
components analysis, and elliptic covariance 
outlier detection to investigate the data.

Unsupervised learning
• For clustering, I utilized k-means clustering, 

hierarchical clustering, Gaussian Mixture 
Modeling, and self-organizing maps (SOMs)

Supervised learning
• For classification, I utilized decision trees 

classification, k-nearest neighbors (kNN), and 
multi-layer perceptrons (MLPs).

• For regression, I used decision trees regression, 
linear regression, and long short-term neural 
networks (LSTMs).

Problem Statement & Definition
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Exploratory Data Analysis
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• Pre-processed raw data:
• No missing values but has clear outliers

Outlier

Outlier
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Exploratory Data Analysis
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• After outlier removal using elliptic covariance method:
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Exploratory Data Analysis
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Response 
data
Fault = 1
No fault = 0
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• Implemented 3-component PCA focusing on temperature variables
• Visually, did not find any straightforward covariance relations between principal components

Exploratory Data Analysis
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Exploratory Data Analysis
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Presenter Notes
Presentation Notes
I checked histograms of certain variables to see their general distributions. For example, many signal variables were not binary as initially expected but fell within a partial range.



Slide 1212/06/2021 Slide 1212/06/2021

• Cross plots of temperature variables 
were performed to see relationships 
and whether there were natural fault 
clusters 

• There were some strong correlations 
that were intuitive; for example, 
between mixed air temperature and 
outdoor air temperature (C = 0.783)

Exploratory Data Analysis
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Exploratory Data Analysis
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• Elbow method suggested 3 clusters, 
while dendrograms suggest 4 clusters

• However, clusters do not seem to 
have any physical significance
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• Self-organizing maps 
with 2 clusters specified 
had an accuracy of 
around 57%

• Actual accuracy was 
unstable and varied 
between each run

Exploratory Data Analysis
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AI/ML Modeling
Exploratory Data Analysis

Training data (80%) Test data (10%)

Models
• Decision tree classification, kNN, MLP
• Decision tree regression, linear 

regression, LSM

Validation data (10%)

Forecasting

Evaluation metrics
• R-squared, RMSE, MAD Comparison
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Classification results: decision trees
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Classification results: kNN
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Classification results: MLP ANN
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AI/ML Modeling (confusion matrices)
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Decision trees 
(validation data)

K-nearest neighbors
(validation data)

Multi-layer perceptron
(validation data)
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AI/ML Modeling (confusion matrices)

Decision trees 
(test data)

K-nearest neighbors
(test data)

Multi-layer perceptron
(test data)
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Regression results: decision trees
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Regression results: linear regression
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Regression results: LSTMs
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• In regression, decision trees regression 
performed even better than the LSTM ANN

AI/ML Modeling
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• Further testing: try models on simulated data for same system 
(AHU-A) with more failure modes and “noisier” data

AI/ML Modeling
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Fault scenarios comparison

ENSY 5800: A.I. in Energy Systems



Slide 2912/06/2021 Slide 2912/06/2021

AI/ML Modeling
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Classification results: decision trees
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Classification results: kNN
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Classification results: MLP ANNs
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AI/ML Modeling (simulated test data)

Decision trees 
(test data)

K-nearest neighbors
(test data)

Multi-layer perceptron
(test data)
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Regression results: decision trees
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Regression results: linear regression
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Regression results: LSTM ANN
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AI/ML Modeling (simulated test data)

ENSY 5800: A.I. in Energy Systems

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decision tree regression Linear regression LSTM

RMSE Rsquared MAD

80

82

84

86

88

90

92

94

96

98

100

Decision tree regression Linear regression LSTM

Overall accuracy for test data (%)



Slide 4012/06/2021 Slide 4012/06/2021

Conclusions
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• Unsupervised learning methods did not yield significant 
insight into the dataset

• Supervised learning techniques (especially classification) 
yielded accurate outputs

• In both classification and regression, decision-tree based 
methods performed excellently, likely due to similarity with 
conditional programming

• Chosen inputs are sufficient to accurately determine faults
• In practice, the model will be fed data from AHU operations 

from the BMS via BACNET, and a prediction will be made for 
each timestamp.
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Recommendations
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• Focus on classification and regression methods for future 
analysis

• Attempt ensemble learning
• Explore more neural network options in place of weaker 

methods (e.g. MLP regression in place of linear regression)
• Non-neural network methods may be preferable where there is 

no significant accuracy increase (less time usage)
• Extend AI model to discriminate between specific types of 

faults and fault intensity instead of just fault/no fault
• Tweak parameters of LSTM model for greater accuracy
• Apply algorithm to a more diverse experimental dataset
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