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ABSTRACT 
Fault detection is an integral part of any modern building 

system. If faults are not detected and resolved in a timely manner, 
health and safety issues may arise in addition to wasted energy 
from ineffective usage. In this study, various unsupervised, 
supervised and Artificial Neural Network (ANN) Learning 
Techniques for fault detection are deployed to perform fault 
detection for an air handling unit (AHU) within a small 
commercial building in Iowa. Analysis was performed on both 
an experimental dataset and a simulated dataset with synthetic 
data for the given AHU to test algorithm robustness under 
different fault conditions. Data preparation and exploratory data 
analysis was performed before application of AI techniques to 
detect trends and enhance the quality of the dataset. Model 
goodness was investigated using R-squared, Root Mean Squared 
Error (RMSE), and Mean Absolute Deviation (MAD) measures. 
Although all classification and regression methods used 
displayed satisfactory results, decision-tree based methods 
(decision trees classification and decision trees regression) 
displayed the highest accuracy for both experimental and 
simulated data while being less computationally expensive than 
ANN techniques with similar accuracy. 
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NOMENCLATURE 
AHU Air Handling Unit 
BACnet Building Automation and Controls Network 
BMS Building Management System 
PCA Principal Component Analysis 
SOM Self-Organizing Maps 
EDA Exploratory Data Analysis 
kNN K-Nearest Neighbor 
ANN Artificial Neural Network 
LSTM Long Short Term Memory 
RMSE Root Mean Squared Error 

MAD Mean Absolute Deviation 
MLP Multi-Layer Perceptron 
 

1. INTRODUCTION 
 An air handling unit (AHU) connects primary heating and 
cooling plants with building zones, controls building ventilation 
air intake, and greatly affects the energy consumed for heating, 
cooling, and ventilating, as well as supply air temperature and 
humidity levels. In effect, AHUs manage energy exchange and 
ventilation in building spaces. Therefore, an AHU’s operation 
significantly impacts building energy use, health, and comfort 
aspects. For example, faulty AHU ventilation may lead to a 
higher level of recirculation for unwanted particulates such as 
the COVID-19 virus. Furthermore, other faults such as leakage 
from heating or cooling coils results in increased energy 
consumption, increased costs to building owners, and indoor 
thermal discomfort. The successful detection of AHU faults in a 
timely manner can result in improved comfort, energy savings, 
air quality improvement, increased equipment lifetime, and 
improved service scheduling. 

There are currently several key issues in AHU fault 
detection. Firstly, even though the fundamental architecture of 
an AHU is unchanged between individual units, every AHU is a 
custom system that is made for the specific building and spaces 
it serves, meaning that there is no standard AHU system for 
model calibration. For instance, different building owners may 
implement different energy efficiency measures based on their 
needs such as an economizer or heat recovery wheel. 
Furthermore, multiple operational modes are possible in AHUs 
such as ‘occupied mode’ and ‘unoccupied mode’ and AHUs may 
constantly switch modes or turn off, resulting in frequent 
transient operation. Finally, due to the aforementioned 
challenges, there is no generalized analytical model for the 
complete deterministic analysis of an arbitrary AHU, making 
fault detection using conventional methods a significant 
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challenge and a key motivator for utilizing AI methods in fault 
detection. 

In this study, fault detection is done for an AHU designated 
AHU-A in a small size commercial building in Iowa during 
summer, winter, and the transition season. As this is a benchmark 
dataset, faults were manually imposed onto the control system. 
Each fault was tested for one day. The main variables for both 
the experimental and simulated datasets were temperature 
(outdoor air, supply air, mixed air, return air, status signals 
(supply air fan, return air fan), control signals (supply air fan 
speed, return air fan speed, exhaust air damper, outdoor air 
damper, return air damper, cooling coil valve, heating coil 
valve), and occupancy mode indicator. The objective was to 
determine the fault detection ground truth parameter, which was 
a binary output with ‘1’ for ‘fault’ and ‘0’ for ‘no fault’. 
 

 
 
FIGURE 1: SPACES SERVED BY AHU-A 
 

AHU-A features an economizer duct configuration, along 
with a heating coil and cooling coil for both heating and cooling 
capabilities. 

 
FIGURE 2: SCHEMATIC DIAGRAM OF AHU-A. 

2. MATERIALS AND METHODS 
For this study, the workflow was divided into five main 

stages in sequential order. Firstly, the raw data was pre-
processed and prepared for further analysis. Afterwards, 
exploratory data analysis (EDA) was performed to gain deeper 
understanding of the input variables and detect any possible 
hidden trends via unsupervised learning methods. Supervised 
learning and artificial neural network (ANN) methods were then 
implemented, and results were compared via different measures 
of goodness and model accuracy to determine the best AI model 
for fault detection.  
 

 
FIGURE 3: PROJECT WORKFLOW 
 
2.1 Pre-processing 

Although the raw input data did not have missing values, 
there were several outliers present. Outliers were removed using 
the elliptic covariance method. 

 

 
FIGURE 4: TIME SERIES PLOT OF TEMPERATURE 
VARIABLES AFTER OUTLIER REMOVAL 
 

Afterwards, methods such as 3-component Principal 
Components Analysis (PCA) was performed with a focus on the 
temperature variables to find covariance relations. Cross plots of 
temperature variables were also performed to check for natural 
fault clusters. However, these methods did not yield significant 
insight into the dataset, which necessitated the use of 
unsupervised learning to attempt finding any hidden 
relationships. 
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FIGURE 5: PCA FOR TEMPERATURE VARIABLES 
 

 
FIGURE 6: CROSS PLOTS OF TEMPERATURE VARIABLES 
 
 
2.1 Unsupervised learning 

Unsupervised learning is a set of machine learning 
techniques primarily used to detect hidden trends in data via 
clustering. K-means clustering, hierarchical clustering, Gaussian 
Mixture Modeling, and Self-Organizing Maps (SOMs) were 
used in this study to attempt finding meaningful clusters of data. 
Although the ‘elbow method’ in k-means clustering suggested 3 
clusters as optimal, hierarchical clustering suggested 4 clusters. 
However, attempts at clustering via these suggestions yielded no 
results that had physical significance. 

 
 

FIGURE 7: HIERARCHICAL CLUSTERING DENDOGRAM 
 

 
FIGURE 8: K-MEANS CLUSTERING USING 3 CLUSTERS 
 

As a further measure, SOMs with 2 clusters specified for 
‘fault’ and ‘no fault’ were attempted. This yielded an accuracy 
of approximately 57%, which was unstable and varied between 
each run.  
 
2.2 Supervised learning 

Supervised learning methods were the primary methods 
used to predict faults. To ensure that overfitting was not 
occurring, the dataset was split into training, validation, and test 
data with a percentage split of 80, 10, and 10 respectively. 
Decision trees classification, k-nearest neighbors (kNN), and 
multi-layer perceptron (MLP) ANN were used for classification, 
while decision trees regression, linear regression, and long short 
term memory (LSTM) ANN were used for regression.  
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3. RESULTS AND DISCUSSION 
For the experimental dataset, both classification and 

regression methods yielded extremely accurate results, with 
overall accuracy generally exceeding 97% in classification for 
both faults and no faults with no indication of overfitting. 
 

 
 

 
 
FIGURE 9: CONFUSION MATRIX FOR DIFFERENT AI 
METHODS WITH TEST DATA (EXPERIMENTAL DATASET) 
 
 
 
 

 

 
 
FIGURE 10: PREDICTED VS ACTUAL FAULTS FOR DECISION 
TREES CLASSIFICATION (EXPERIMENTAL DATASET) 
 

 
 
FIGURE 11: PREDICTED VS ACTUAL FAULTS FOR KNN 
CLASSIFICATION (EXPERIMENTAL DATASET) 
 

 
 
FIGURE 12: PREDICTED VS ACTUAL FAULTS FOR MLP ANN 
CLASSIFICATION (EXPERIMENTAL DATASET)  
 

Similarly, regression produced highly accurate results with 
good metrics for the relevant goodness measures of R-squared, 
Root Mean Squared Error (RMSE), and Mean Absolute 
Deviation (MAD). Decision trees regression outperformed linear 
regression and LSTM for the experimental dataset with an 
accuracy of over 99%. 
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FIGURE 13: GOODNESS MEASURES FOR REGRESSION 
METHODS UTILIZED (EXPERIMENTAL DATASET) 
 

 
 
FIGURE 14: OVERALL ACCURACY FOR REGRESSION 
METHODS UTILIZED (EXPERIMENTAL DATASET) 
 

 
 
FIGURE 15: PREDICTED VS ACTUAL FAULTS FOR DECISION 
TREES REGRESSION (EXPERIMENTAL DATASET) 
 
 
 

 
 
FIGURE 16: PREDICTED VS ACTUAL FAULTS FOR LINEAR 
REGRESSION (EXPERIMENTAL DATASET) 
 

 
 
FIGURE 17: PREDICTED VS ACTUAL FAULTS FOR LSTM 
ANN REGRESSION (EXPERIMENTAL DATASET) 
 

Given these accurate results, further testing was performed 
by applying the AI techniques used for the experimental dataset 
onto the simulated dataset to examine robustness with more 
failure modes (such as a stuck outdoor air damper and stuck 
cooling coil valve) and more stochastic variation (noise). 
 

 
FIGURE 18: TIME SERIES PLOT OF TEMPERATURE 
VARIABLES FOR SIMULATED DATASET AFTER OUTLIER 
REMOVAL 
 

For the simulated dataset, both classification and regression 
methods still yielded accurate results with a minimal drop in 
performance. Overall accuracy generally exceeded 90% in 
classification for both faults and no faults with no indication of 
overfitting. 
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FIGURE 19: CONFUSION MATRIX FOR DIFFERENT AI 
METHODS WITH TEST DATA (SIMULATED DATASET) 

 

 
 
FIGURE 20: PREDICTED VS ACTUAL FAULTS FOR DECISION 
TREES CLASSIFICATION (SIMULATED DATASET) 
 

 
 
FIGURE 21: PREDICTED VS ACTUAL FAULTS FOR KNN 
CLASSIFICATION (SIMULATED DATASET) 
 

 
 
FIGURE 22: PREDICTED VS ACTUAL FAULTS FOR MLP ANN 
CLASSIFICATION (SIMULATED DATASET) 
 
 

Similarly, regression still produced highly accurate results 
with good metrics for the relevant goodness measures. Decision 
trees regression outperformed linear regression and LSTM for 
the experimental dataset with an accuracy of over 91%. 

 
 
 
 
 



 7 © 2021 by Northeastern University 
  

 
 
FIGURE 23: GOODNESS MEASURES FOR REGRESSION 
METHODS UTILIZED (SIMULATED DATASET) 
 

 
 
FIGURE 24: OVERALL ACCURACY FOR REGRESSION 
METHODS UTILIZED (SIMULATED DATASET) 
 

 
 
FIGURE 25: PREDICTED VS ACTUAL FAULTS FOR DECISION 
TREES REGRESSION (SIMULATED DATASET) 
 

For both experimental and simulated datasets, results from 
regression were truncated to standardize the predictions and 
eliminate trailing decimals. For example, a result of 1 × 10−14 
is automatically truncated to 0. Therefore, in some cases where 
the algorithm failed to predict the outcome, the prediction would 
show as 0.5 instead of a number close to 0 or 1 as in Figure 25. 

 

 
 
FIGURE 26: PREDICTED VS ACTUAL FAULTS FOR LINEAR 
REGRESSION (SIMULATED DATASET) 
 

 
 
FIGURE 27: PREDICTED VS ACTUAL FAULTS FOR LSTM 
ANN REGRESSION (SIMULATED DATASET) 
 

 

4. CONCLUSION 
In this study, various AI methods were used to perform fault 

detection for a specified AHU. Although unsupervised learning 
methods did not yield significant insight into the dataset, 
supervised learning techniques yielded accurate outputs. In both 
classification and regression, decision-tree based methods 
performed excellently, likely due to similarities with conditional 
programming. In practice, an AI model would be fed data from 
AHU operations from the building management system (BMS) 
via BACnet, and a prediction would be made for each timestamp. 
Further work may focus on AI improvements such as ensemble 
learning and functionality improvements such as the ability to 
discriminate between specific types of faults along with fault 
intensity. 
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